روش های طیفی برای حل عددی رده ای از معادلات انتگرال-دیفرانسیل تأخیری ولترای خطی

thesis
abstract

مسأله ی حل معادلات انتگرال-دیفرانسیل تأخیری، یکی از موضوعات مهم در آنالیز عددی به شمار می رود. برای حل معادلات انتگرال-دیفرانسیل روش های مختلفی وجود دارد. با اینکه روش های طیفی در حل معادلات دیفرانسیلی به طور قابل ملاحظه ای مورد توجه قرار گرفته اند، تجربه ی اندکی در بکار بردن این روش ها برای حل معادلات انتگرال-دیفرانسیل تأخیری موجود است‎. در این پایان نامه روش طیفی هم محلی را برای حل معادلات انتگرال-دیفرانسیل تأخیری ولترای خطی بکار می بریم. پایان نامه با مروری بر معادلات انتگرالی و مفاهیم مقدماتی روش های طیفی آغاز می شود، سپس نشان می دهیم که روش طیفی هم محلی مبتنی بر چندجمله ای های لژاندر، منجر به یک روش عددی کارا و بسیار دقیق برای تقریب جواب های معادلات انتگرال-دیفرانسیل با تأخیرات متناسب می شود. نتایج عددی به دست آمده توسط برنامه نویسی میپل نشان داده که روش، از دقت بالایی برخوردار است.

similar resources

حل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل

در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم  بسل  است. نت...

full text

روش ماتریسی بسل برای حل عددی رده ای از معادلات دیفرانسیل-انتگرال خطی از مرتبه بالا

در این پایان نامه یک روش عددی موسوم به روش ماتریسی بسل برای تقریب زدن جواب معادلات دیفرانسیل-انتگرال ولترا و فردهولم-ولترا خطی از مرتبه بالا تحت شرایط مخلوط مورد بررسی قرار گرفته است. این روش با استفاده از چندجمله ای های بسل و روش هم محلی معادله دیفرانسیل-انتگرال را به یک معادله ماتریسی تبدیل می کند. معادله ماتریسی متناظر با یک دستگاه معادلات خطی با ضرایب مجهول بسل است. بعلاوه روش ماتریسی بسل...

15 صفحه اول

حل عددی معادلات انتگرال - دیفرانسیل ولترای سهموی

در این رساله به حل عددی معادله انتگرال- دیفرانسیل ولترای سهموی با دامنه ی بی نهایت می پردازیم. بدین منظور با توجه به دو شرط فرضی زیر: ?_0={(0,t ):0?t?t}, ?_1={(d,t ):0?t?t} . دامنه ی فاصله ای بی نهایت را به سه زیر دامنه ی زیر تقسیم می کنیم: q_d={(x,t) ?d<x<+? ,0?t?t}, q_0={(x,t) ?-?<x<0 ,0?t?t}, q={(x,t) ?0?x?d ,0?t?t}. سپس با محدود کردن مسأله بر روی دو زیر دامنه ی q_d و q_0 واستفاده از ت...

15 صفحه اول

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

full text

حل عددی برای دسته خاص از دستگاه معادلات انتگرال-دیفرانسیل ولترای غیر خطی با یک روش ساده با دقت بالا

در این رساله روش تاو عملیاتی همراه با تجزیه ادومیان برای حل عددی از معادله انتگرال-دیفرانسیل ولترای غیر خطی و نیز دستگاه معادلات انتگرال-دیفرانسیل ولترای غیر خطی بکار رفته است. همچنین از تقریب پاده برای بهبود بخشیدن جواب حاصل استفاده شده است. این روش ضمن برخورداری از دقت کافی، از محاسبات پیچیده ای نیز برخوردار نیست و در تمامی مراحل از عملیّات ساده ماتریسی استفاده شده است. در انتهای هر فصل مثا...

15 صفحه اول

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023